Subpallial dlx2-expressing cells give rise to astrocytes and oligodendrocytes in the cerebral cortex and white matter.

نویسندگان

  • Christine A G Marshall
  • James E Goldman
چکیده

The precise origins of postnatal subventricular zone (SVZ) cells are not known. Furthermore, the gliogenic potential of progenitors expressing Dlx genes that migrate ventrodorsally from the ganglionic eminences has not been explored in vivo. Here, we identify the embryonic origins of two distinct populations of postnatal SVZ cells: SVZ border cells, which express Zebrin II, and migratory cells in the central SVZ, which are generally devoid of Zebrin II expression (Staugaitis et al., 2001). Zebrin II is expressed by all cells of the telencephalic primordium, with its expression becoming restricted to astrocytes in the mature telencephalon. As the neuroepithelium folds during corticostriatal sulcus formation (embryonic day 13-15), a wedge of Zebrin II+ cells is created at the presumptive site of the dorsolateral SVZ. At this time, Dlx2-expressing cells and their progeny begin to migrate ventrodorsally along a medial path from the ganglionic eminences. These migratory subpallial cells invade the wedge of Zebrin II+ cells to form the central region of the SVZ. We used a Dlx2/tauLacZ knock-in to perform a short-term lineage analysis of Dlx2-expressing cells throughout SVZ formation and the postnatal peak of gliogenesis. Dlx2/tauLacZ [beta-galactosidase (beta-gal)]-expressing cells populate the central SVZ, whereas Zebrin II-expressing cells form its borders. Furthermore, beta-gal expression demonstrates a lineage relationship between Dlx2-expressing cells and glia residing in the dorsal telencephalon. We propose a model for the formation of the postnatal SVZ and demonstrate that subpallium-derived Dlx2-expressing cells give rise to astrocytes and oligodendrocytes in the white matter and cerebral cortex.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Angiotensin receptor-like immunoreactivity in adult brain white matter astrocytes and oligodendrocytes.

Most of the physiological effects of brain angiotensins are currently believed to be mediated by angiotensin receptors located principally on neurons. However, numerous studies in vitro have demonstrated the presence of functional angiotensin receptors on brain astrocytes, raising the possibility that glial cells may also participate in mediating the effects of the central renin-angiotensin sys...

متن کامل

Early postnatal astroglial cells produce multilineage precursors and neural stem cells in vivo.

To identify the fates that astroglial cells can attain in the postnatal brain, we generated mice carrying an inducible Cre recombinase (Cre-ER(T2)) controlled by the human GFAP promoter (hGFAP). In mice carrying the GCE (hGFAP-Cre-ER(T2)) transgene, OHT (4-hydroxy-tamoxifen) injections induced Cre recombination in astroglial cells at postnatal day 5 and allowed us to permanently tag these cells...

متن کامل

Early postnatal proteolipid promoter-expressing progenitors produce multilineage cells in vivo.

Proteolipid promoter (plp promoter) activity in the newborn mouse CNS is restricted to NG2-expressing oligodendroglial progenitor cells and oligodendrocytes. There are two populations of NG2 progenitors based on their plp promoter expression. Whereas the general population of NG2 progenitors has been shown to be multipotent in vitro and after transplantation, it is not known whether the subpopu...

متن کامل

Age-dependent fate and lineage restriction of single NG2 cells.

NG2-expressing glia (NG2 cells, polydendrocytes) appear in the embryonic brain, expand perinatally, and persist widely throughout the gray and white matter of the mature central nervous system. We have previously reported that NG2 cells generate oligodendrocytes in both gray and white matter and a subset of protoplasmic astrocytes in the gray matter of the ventral forebrain and spinal cord. To ...

متن کامل

Nitrosative and oxidative injury to premyelinating oligodendrocytes in periventricular leukomalacia.

Periventricular leukomalacia (PVL), the major substrate of cerebral palsy in survivors of prematurity, is defined as focal periventricular necrosis and diffuse gliosis in immature cerebral white matter. We propose that nitrosative and/or oxidative stress to premyelinating oligodendrocytes complicating cerebral ischemia in the sick premature infant is a key mechanism of injury interfering with m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 22 22  شماره 

صفحات  -

تاریخ انتشار 2002